
Catalogue no. 12-001-XIE

Survey
Methodology

June 2004



How to obtain more information

Specific inquiries about this product and related statistics or services should be directed to:  Business Survey Methods Division,
Statistics Canada, Ottawa, Ontario, K1A 0T6 (telephone: 1 800 263-1136).

For information on the wide range of data available from Statistics Canada, you can contact us by calling one of our toll-free
numbers. You can also contact us by e-mail or by visiting our website.

National inquiries line 1 800 263-1136
National telecommunications device for the hearing impaired 1 800 363-7629
Depository Services Program inquiries 1 800 700-1033
Fax line for Depository Services Program 1 800 889-9734
E-mail inquiries infostats@statcan.ca
Website www.statcan.ca

Information to access the product

This product, catalogue no. 12-001-XIE, is available for free. To obtain a single issue, visit our website at www.statcan.ca and
select Our Products and Services.

Standards of service to the public

Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner and in the official language of
their choice. To this end, the Agency has developed standards of service that its employees observe in serving its clients. To
obtain a copy of these service standards, please contact Statistics Canada toll free at 1 800 263-1136. The service standards
are also published on www.statcan.ca under About Statistics Canada > Providing services to Canadians.



Statistics Canada
Business Survey Methods Division

Survey
Methodology

June 2004

Note of appreciation

Canada owes the success of its statistical system to a long-standing partnership between 
Statistics Canada, the citizens of Canada, its businesses, governments and other 
institutions. Accurate and timely statistical information could not be produced without their 
continued cooperation and goodwill.

April 2006

Catalogue no. 12-001-XIE
ISSN 1492-0921

Frequency: semi-annual

Ottawa

Cette publication est disponible en français sur demande (no 12-001-XIF au catalogue).

 
 
Published by authority of the Minister responsible for Statistics Canada 
 
© Minister of Industry, 2006 
 
All rights reserved. The content of this electronic publication may be reproduced, in whole or in part, 
and by any means, without further permission from Statistics Canada, subject to the following 
conditions: that it be done solely for the purposes of private study, research, criticism, review or 
newspaper summary, and/or for non-commercial purposes; and that Statistics Canada be fully 
acknowledged as follows: Source (or “Adapted from”, if appropriate): Statistics Canada, year of 
publication, name of product, catalogue number, volume and issue numbers, reference period and 
page(s). Otherwise, no part of this publication may be reproduced, stored in a retrieval system or 
transmitted in any form, by any means—electronic, mechanical or photocopy—or for any purposes 
without prior written permission of Licensing Services, Client Services Division, Statistics Canada, 
Ottawa, Ontario, Canada K1A 0T6. 
 

 



Vol. 30, No. 1, pp. 45-55 
Statistics Canada, Catalogue No. 12-001

 

Properties of the Weighting Cell Estimator Under a  
Nonparametric Response Mechanism 

D. Nóbrega Da Silva and Jean D. Opsomer 1 

Abstract 
The weighting cell estimator corrects for unit nonresponse by dividing the sample into homogeneous groups (cells) and 
applying a ratio correction to the respondents within each cell. Previous studies of the statistical properties of weighting cell 
estimators have assumed that these cells correspond to known population cells with homogeneous characteristics. In this 
article, we study the properties of the weighting cell estimator under a response probability model that does not require 
correct specification of homogeneous population cells. Instead, we assume that the response probabilities are a smooth but 
otherwise unspecified function of a known auxiliary variable. Under this more general model, we study the robustness of the 
weighting cell estimator against model misspecification. We show that, even when the population cells are unknown, the 
estimator is consistent with respect to the sampling design and the response model. We describe the effect of the number of 
weighting cells on the asymptotic properties of the estimator. Simulation experiments explore the finite sample properties of 
the estimator. We conclude with some guidance on how to select the size and number of cells for practical implementation 
of weighting cell estimation when those cells cannot be specified a priori. 

                                                           
1. D. Nacimento Da Silva, Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Natal, RN 59072-970, Brazil. E-mail: 

damiao@ccet.ungrn.br; Jean D. Opsomer, Department of Statistics, Iowa State University, Ames IA 50011, U.S.A. E-mail: jopsomer@iastate.edu. 

  
Key Words: Finite population asymptotics; Quasi-randomization inference; Weighting cell selection. 
 
 

 

1. Introduction  
Item and unit nonresponse occur in almost all large-scale 

surveys, and proper estimation techniques need to account 
for it. While item nonresponse is often dealt with through 
imputation, unit nonresponse is most often accounted for 
through weighting adjustments. Cell weighting adjustments 
for nonresponse have been applied since at least the 1950s 
in survey estimation, e.g., U.S. Bureau of the Census (1963, 
page 53), and continue to be widely used in practice today, 
because they have intuitive appeal and are relatively easy to 
implement in practice. Reviews of common weighting 
procedures are given in Kalton (1983) and Kalton and 
Kasprzyk (1986). A number of authors have studied the 
properties of the weighting cell estimator under a variety of 
theoretical frameworks. Oh and Scheuren (1983) derive the 
mean and variance of the weighting cell estimator under 
simple random sampling, conditional on the sample size and 
the number of respondents in each cell. See also Kalton and 
Maligalig (1991). Särndal, Swensson and Wretman (1992, 
page 578) use the term “response homogeneity group” for 
cells in which the nonresponse is assumed to be constant, 
and derive the properties of the resulting weighting cell 
estimator for general designs. The recently introduced fully 
efficient fractional imputation (FEFI) of Kim and Fuller 
(1999) can also be expressed as a weighting cell estimator, 
and these authors derive its model properties under the 
assumption that the variables are independent and 
identically distributed (iid) within each cell. 

While the specific assumptions vary, a common thread
among all these results is that the weighting cells are 
correctly specified, in the sense that units within each cell 
are indeed fully “exchangeable” (the precise definition of 
this term depends on the framework selected: equal re-
sponse probabilities for randomization-based inference, or 
iid observations for model-based inference). In the termi-
nology of Little and Rubin (2002, Chapter 1), this is the case 
of observations missing at random (MAR), where auxiliary 
information (i.e., cell membership in this case) can be used 
to correct the inference for the nonresponse. 

In this article, we depart from this framework. We will 
assume that the response mechanism depends on a known 
continuous auxiliary variable, but the exact functional form 
of this relationship is left almost completely unspecified 
(details on this nonparametric response mechanism are 
provided in the next section). Knowledge of such a variable 
could be used to construct more sophisticated nonresponse 
adjustments such as propensity weighting (Cassel, Särndal 
and Wretman (1983), Little (1986), and Da Silva and 
Opsomer (2003)) or post-stratification, but we will instead 
limit our use of this auxiliary variable to the division of the 
population into weighting cells. Our primary goal with this 
approach is to study the robustness of the popular weighting 
cell estimator to model misspecification, and in particular, 
the  effect  of  the  number  of  cells.  Hence,  in  contrast  to 
the approach of the authors discussed above, the weighting 
cells are used as a practical way to construct an survey 
estimator, but they will not be assumed as part of the 
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statistical framework. This is similar to the “adjustment by 
subclassification” idea proposed by Cochran (1968) for 
removing the bias due to a continuous covariate in obser-
vational studies.  

We will study the properties of the estimator under 
quasi-randomization, a term used by Oh and Scheuren 
(1983) to denote joint inference under the sampling design 
and the response mechanism. The asymptotic properties of 
the estimator will be established by embedding the finite 
population and the corresponding sampling design and 
response mechanism in a sequence of such populations and 
random mechanisms, as will be explained in later sections. 
This asymptotic framework is very similar to that advocated 
by Hansen, Madow and Tepping (1983) and used in Isaki 
and Fuller (1982), among others. 

The remainder of this paper is as follows. In section 2, 
we introduce the notation and framework for the sampling 
design and the nonresponse model, and discuss the 
weighting cell estimator. In the following section, we derive 
the asymptotic design properties of the estimator. In section 
4, we report on a simulation study to examine the practical 
behavior of the estimator, compare its practical behavior 
with that predicted by the asymptotic theory, and provide 
some guidance on the choice of the weighting cells. 

 
2. The Weighting Cell Estimator  

Before describing the weighting cell estimator, we 
introduce our survey design framework and the response 
generating mechanism. We consider a population =U  

}...,,2,1{ N , where N  is finite and known. For every 
element i  in ,U  let )...,,,( ,,2,1 ipiii YYY=Y  be the 
associated vector of values of p  characteristics of interest, 

....,,, 21 pYYY  Likewise, let )...,,,( ,,2,1 iqiii XXX=X  
be the vector of values of q  auxiliary variables, 

,...,,, 21 qXXX  corresponding to the thi  unit, .Ui ∈  We 
assume that iX  is known .Ui ∈∀  If ,1=p  we denote iY  
by iY  and, for iXq ,1=  is used to denote .iX  Let s  
represent a sample drawn from U  according to some 
sampling design ).(⋅p  This sampling design )(⋅p  is 
chosen by the survey sampler and may be based on 
information available in the ., Uii ∈X  

The goal of the sample survey is to estimate unknown 
population quantities such as the population mean or total, 
or a function of these quantities. To simplify the presen-
tation, we will focus on the estimation of the population 
total of the ,iY  

.∑=
U

iy Yt  

When there is no nonresponse, this quantity will be 
estimated by a sample-based estimator of the form 

∑ ∑==
s U

iiiiiy Iww YYt̂  (1) 

where the ,, siwi ∈  are the sampling weights and iI  is an 
indicator for whether the thi  unit is in the sample or not. In 
this article, we will assume that the sampling weights are the 
inverse of the inclusion probabilities, or 1−π= iiw , with 

),(iPr si ∈=π  so that the estimator (1) is the classical 
Horvitz-Thompson estimator (Horvitz and Thompson 
1952). Also, let T

NIII )...,,,( 21=I  represent the vector 
of inclusion indicators for the population. 

In the context of nonresponse, it is convenient to assume 
that each unit in the population is either a respondent or a 
nonrespondent for the variable of interest .Y  Consider the 
vector ,)...,,,( 21

T
NRRR=R  where iR  indicates if the 

thi  unit is a respondent or not. The distribution of R  is 
called the response mechanism. In analogy to the definition 
of the sample ,s  we use Ur ⊆  to denote the (realized) set 
of respondents in the population, i.e., those elements for 
which .1=iR  Since the distribution of r  and R  is 
typically unknown and can in principle depend on the 
realized value of I  as well as on the ,Y  we need to assume 
a model for the response mechanism. When this assumed 
model is used to develop an estimator for a population 
quantity, the properties of this estimator become dependent 
on the response model. Hence, a misspecified model for R  
has the potential to cause significant and difficult to measure 
bias in both the estimator and its associated measures of 
precision. To avoid this problem, we will keep the response 
mechanism quite general in this article. Specifically, we will 
assume that the iR  are independent Bernoulli variables with 

,,10,},|1Pr{ UiR iii ∈∀≤ϕ<ϕ== YI  

and that the iϕ  can be written as ),( ii Xϕ=ϕ  with )(⋅ϕ  
a continuous and differentiable but otherwise unspecified 
function of the .iX  Note that this includes the uniform 
response mechanism, where ϕ≡ϕ i  for all ,Ui ∈  as a 
special case. 

When some of the selected elements do not respond, the 
estimator (1) can no longer be computed, and an estimator 
that includes a nonresponse adjustment is required. In this 
article, we are using the weighting cell estimator for this 
purpose. For simplicity, we will describe the situation in 
which both the iY  and iX  are univariate variables, but the 
approach can be generalized to the multi-dimensional case. 
Let rssr ∩=  represent the subset of the selected elements 
that actually respond to the survey. 

Let ,...,,1, GgU g =  represent G  groups obtained by 
dividing the population into groups based on the values of the 
known  auxiliary  variable  .X   Specific  implementations  
might generate groups of equal  size,  or  divide  the  range  of  
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X  into equal-length intervals. We shall leave the imple-
mentation unspecified for now, and state some general 
assumptions about G  and the size of the groups in the next 
section. Note that we are considering the groups as fixed with 
respect to the sampling design and the response mechanism, 
which excludes the situation in which groups are formed 
based on the observed sample values }.:{ siX i ∈  This was 
done primarily to simplify the theoretical derivations, and is 
similar to the approach of Särndal et al. (1992) and Kim and 
Fuller (1999), among others. 

Let gg Uss ∩=  be the portion of the sample that falls in 
group ,g  and define similarly ., grgr Uss ∩=  The 
weighting cell estimator is defined as 

.ˆ
,,

1
WC ∑∑ ∑

∑
∈=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

gr
gr

g

si
ii

G

g s i

s i
Yw

w

w
t  (2) 

From this expression, is it easy to see that in each group, the 
estimator of the group total is ratio-adjusted by the inverse 
of the weighted proportion of respondents in the cell. This 
estimator is also the FEFI estimator of Kim and Fuller 
(1999). The properties of this estimator will be studied in 
next section. 

 
3. Properties Under Quasi-Randomization 
 

3.1 Asymptotic Framework and Assumptions  
The quasi-randomization properties of the weighting cell 

estimator will be studied in the usual finite population 
asymptotic context, in which the population U  is treated as 
an element in an increasing sequence vUUU ...,,, 21  with 

,∞→v  with a corresponding sequence of sampling designs 
)(⋅vp  (see Isaki and Fuller (1982) for an early example of 

this framework). Let vN  be the size of the thv  population 
with ,1−> vv NN  let T

Nv v
YYY )...,,,( 21=Y  denote the 

set of values of the characteristic of interest, ,Y  associated 
with ,vU  and similarly, ,( 1Xv =X .)...,,2

T
N v

XX  We 
assume that vX  is known. For each ,v  a sample of size 

)( 1−≥ vvv nnn  is selected from ,vU  according to a 
sampling design ).(⋅vp  As before, let =vI  

T
N v

III ),,( 21  be the corresponding sample inclusion 
vector. We will denote the thK  order central moment of the 
sample membership indicators 

kii II ...,,
1

 by 

.)(
1

...,,1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π−=Δ ∏

=

K

k
iiii kkK

IE  (3) 

It is assumed that vU  can be divided into 
)( 1−≥ vvv GGG  mutually exclusive and exhaustive groups, 

....,,1, vg GgU =  These groups are constructed by 
sorting the population according to their X  values and 

dividing the population into vG  groups. We will assume 
that there are at least vG  distinct values among the elements 
of .vX  Let gN  represent the number of elements in .gU  

As mentioned in the previous section, we are treating the 
groups as fixed with respect to the population. The problem 
created by this approach is that in general, there is a non-
zero chance of obtaining a group without any respondents. 
We solve this problem by adding a small constant in the 
denominators in each of the groups, or 

( )
.

,max

ˆ
1 1

WC
,

,

∑ ∑
∑

∑
= ∈−

∗

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
v

gr

gr

g
G

g si
ii

s vvgi

s i
Yw

nGNw

w
t  (4) 

Hence, the difference between ∗
WCt̂  and WCt̂  in (2) is 

asymptotically negligible. This is similar to what is often 
done in practice to avoid overly large weights in ratio 
estimation. 

Fuller and Kim (2003) give the limiting distribution of 
the FEFI estimator under the assumption that the response 
probabilities are constant within these cells. We will study 
the case where the response probabilities are a smooth 
function of an auxiliary variable and the number of cells are 
allowed to vary. Let T

Nv y
RRR )...,,,( 21=R  be the re-

sponse indicator vector for the thv  population. We assume 
that the distribution of vR  satisfies the nonparametric 
response mechanism assumptions, specified as follows:  
(R1) 

vNRRR ...,,, 21  are independent random variables, 
(R2) vivvi UiR ∈∀ϕ== ,},|1{Pr YI , 
(R3) ,)( vii UiX ∈∀ϕ=ϕ  where )(⋅ϕ  is differentiable 

with bounded first derivative, and the 
],,[ Mmi xxX ∈  with Mm xx ,  fixed constants and 

.Mm xx <   
The remaining assumptions are technical conditions that 

will be used extensively in the proofs. We assume that there 
are positive constants 921 ...,,, λλλ  such that:  
(A1) ,,2

1
1 vivv UinN ∈∀∞<λ<π<λ −  and 

),1,0(1 ∈π→−
vv Nn  as ;∞→v   

(A2) For distinct ,8...,,3,2,...,,1 =∈ KUii vK  

( )
( )⎪⎩

⎪
⎨
⎧

λ+−

λ+−
≤Δ

−−

=

−

=

∏
∏

oddisKif,)1(

evenisKif,)1(

4
2/)1(

1

1

3
2/

1

1
...,,1 K

v
K

k

K
v

K

k
ii

nkN

nkN
K

 

(A3) ∑ ∈
∗

∞→ =∀ϕ=ϕ
gUi vgi

g
v Gg

N
...,,2,1,

1
lim  

;1and ≥v   
(A4) ;max 5λ≤∈ iUi Y

v
  

(A5) ;1min6 ≤ϕ<λ ∈ iUi v
  

6           Da Silva and Opsomer: Properties of the Weighting Cell Estimator Under a Nonparametric Response Mechanism



 

 
Statistics Canada, Catalogue No. 12-001

(A6) ;...,,2,1,1
8

11
7 vvvgv GgGNNG =∀λ≤≤λ −−−   

(A7) .2/10with,1 9 ≤γ≤λ≤≤ γ
vv nG  

 
Assumptions (A1) – (A2) imply that, asymptotically, the 

sampling design is “well behaved,” in the sense that the 
moments of the sample membership indicators are of the 
same order of magnitude as those in simple random 
sampling without replacement. This is a common assump-
tion in finite population asymptotic theory. (A1) also 
requires that the sampling fraction converges to a constant 
in the interval (0, 1). The boundedness assumption (A4) on 
the observations will significantly simplify the proofs for 
some of the theorems in the article, and could be relaxed to 
the existence of bounded moments if desired. Similarly, 
some technical regularity conditions are required to avoid 
degenerate response mechanisms: (A3) provides that the 
limit for the average response probability in a cell exists, 
and (A5) excludes the situation in which some units might 
have .0=ϕ i  Finally, assumptions (A6) and (A7) on the 
weighting cells require that all the cells grow at a similar 
rate, and that the total number of cells does not increase “too 
fast” relative to the sample size. 
 
3.2 Main Results  

The approach we will use in the study of the properties of 
the weighting cell estimator follows that commonly used in 
the study of finite population estimators. First, we show the 
asymptotic equivalence between the non-linear weighting 
cell estimator and a “linearized” approximation. Next, we 
derive the mean squared error properties of the linearized 
estimator and consider those as the asymptotic properties of 
the weighting cell estimator or, more precisely, the 
properties of the asymptotic distribution of the weighting 
cell estimator. See, for instance, Särndal et al. (1992, 
Chapter 5) for a description of this approach. 

The following theorem formally states our first results. 
The proof is in the appendix.  
Theorem 3.1. Consider the sequence of populations 

}.1:{ ≥vU v  Assume that for each ,v  a probabilistic 
sample of fixed size )( 1−≥ vvv nnn  is selected from vU  
according to sampling design ( ),vp ⋅  and that the response 
mechanism satisfies the conditions (R1) – (R2). Finally, 
assume that (A1) – (A7) hold. Then, the estimator ∗

WCt̂  is 
asymptotically equivalent to a linearized random variable 

,~
WCt  in the sense that 

).()~ˆ(
1 1

WCWC
−∗ =− vvp

v

nGOtt
N

 (5) 

 

The bias and variance of vNt /~
WC  are given by 

∑ ∑
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

ϕ−ϕ
=−⎟

⎠

⎞
⎜
⎝

⎛ v

g

G

g U
gi

g

gi

v
v

v

YY
N

Y
N

t
E

1

WC )
~

(
1~

 (6) 

and 

( )
∑ ∑

∑ ∑∑∑

=

−

=
′

=′

−
ϕ

ϕ−ϕ
π+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Δ=⎟

⎠

⎞
⎜
⎝

⎛

′

v

g

v

g g

v

G

g
gi

U g

ii
i

b

G

g U U
gjigij

G

gvv

YY
N

YY
NN

t

1

2
2

2
2

1 1
2

WC

,)
~

(
11

~~1~
Var

 

(7)

 

where 

∑ ∑
∑

∑ ϕ

ϕ
==ϕ=ϕ

g
g

g

g U U i

U ii

gi
gU

gi
g

g

Y
YY

N
Y

N
~

,
1

,
1

 

and 

( )
,

and 1, 2, ..., .

i i g g g
ig

i g

g v

Y Y Y
Y

i U g G

ϕ − + ϕ
=

π ϕ

∀ ∈ ∀ =

 

 
Remark 1. The asymptotic equivalence between ∗

WCt̂  and 

WC
~t  depends on the number of groups ,vG  with a faster 
convergence rate achieved when vG  grows more slowly. 
The intuition behind this result is that the goodness of the 
linear approximation depends on how well the true cell ratio 
response adjustments ∗ϕ g  are estimated by the sample-based 
estimators ./

,
∑ ∑

gr gs s ii ww  Since the cell ratios will be 
better estimators as the sample size grows larger, this would 
argue that vG  should be chosen to be small, which 
corresponds to the current practice in applications of 
weighting cell estimation. However, as will be shown 
below, the MSE properties of WC

~t  under the nonparametric 
response mechanism improve as vG  gets larger. A more 
detailed discussion of the selection of the number of groups 
will be provided after Theorem 3.2 below and in section 4.  
Remark 2. The results in Theorem 3.1 depend on the 
population groups vg GgU ...,,1, =  and on the 

,, vi Ui ∈ϕ  but do not rely on the fact that the response 
probabilities are a smooth function of the auxiliary variable 

.X  Hence, the explicit expressions for the asymptotic bias 
and variance can be used to derive results for other response 
mechanisms that follow (R1) – (R2). In particular, results 
for the response homogeneity group model (see Särndal 
et al. 1992, page 577) follow directly from Theorem 3.1. 
This is also the model studied by Fuller and Kim (2003). 
Under that model, one assumes that gi ϕ≡ϕ  for all 
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,...,,1, GgUi g =∈  and it can easily be shown that the 
bias of WC

~t  is 0 and its variance is 

.)(
11

ˆ
Var

~
Var

22

1
2

WC

∑∑ −π
ϕ

ϕ−
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

= g

v

U
gii

G

g g

g

v

v

y

v

YY
N

N

t

N

t

 

The first term in the variance is the variance of the 
estimator without nonresponse, and the second term 
represents the variance inflation caused by the nonresponse 
under a homogeneous within-cell response mechanism. 

The following corollary follows directly from Theorem 
3.1 and Fuller (1996, Theorem 5.2.1). A proof is given in 
the appendix.  
Corollary 3.1. Under the conditions of Theorem 3.1 with 

2/1<γ  in (A7),  for any sampling design )(⋅vp  such that 

),,0(
~

WC21 VNBY
N

t
n

L

vv
v

v →⎟
⎠

⎞
⎜
⎝

⎛ −−  

where vB  corresponding to the bias of vNt /~
WC  given in 

Theorem 3.1 and  

WClim Var ( / ) (0, ),v v
v

V n t N
→∞

≡ ∈ ∞  

then 

1/ 2 *
WC WCVar (0, 1).

L

v v
v v

t t
Y B N

N N

− ⎛ ⎞⎡ ⎛ ⎞⎤ − − →⎜ ⎟⎜ ⎟⎢ ⎥
⎣ ⎝ ⎠⎦ ⎝ ⎠

 

Corollary 3.1 states that, whenever the linearlized 
estimator WC

~t  achieves asymptotic normality, then so does 
.ˆ

WC
∗t  Since WC

~t  can be written as a classical expansion 
estimator of the form (1), this result is quite general. 

Under the nonparametric response mechanism described 
in (R1) – (R3), it is possible to describe the affect of the 
number of groups vG  on the asymptotic bias and variance 
of .ˆ

WC
∗t  The next theorem gives the asymptotic rates for the 

bias and variance, and is proven in the appendix.  
Theorem 3.2. Assume that (R3) and the conditions of 
Theorem 3.1. Then, 

⎟
⎠

⎞
⎜
⎝

⎛=−⎟
⎠

⎞
⎜
⎝

⎛

v
v

v G
OY

N

t
E

1
~

WC  

and 

.
11

~
Var WC ⎟

⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛

vvvv Gn
O

n
O

N

t
 

Remark 3. Theorem 3.2 shows that both the asymptotic 
bias and variance of the weighting cell estimator ∗

WCt̂  
become smaller as the number of groups vG  increases. An 
intuitive explanation of that fact is that the approximation of 
the function )( ii Xϕ=ϕ  by the step function ∗ϕ=ϕ gi  
improves as the number of cells increases. The asymptotic 
variance has a term that is independent of .vG  This 
“residual variance” is due to the inherent variability of the 
sampling design and the response mechanism, and cannot 
be reduced by changing .vG   
Remark 4. As noted in Remark 1, constructing a good 
linear approximation WC

~t  requires vG  to be small, while 
Theorem 3.2 states that the MSE of WC

~t  is minimized by 
taking vG  as large as possible. Taken together, this can be 
interpreted to mean that, once the sample size in every cell 
is sufficiently large to obtain a “valid” ratio estimator for the 
average cell response probability ,∗ϕ g  it is preferable to 
increase the number of cells than to increase the sample size 
per cell. The simulation experiments discussed in section 4 
will further explore this recommendation. 

The following corollary follows directly from Corollary 
3.1, Theorem 3.2, and Chebyshev’s inequality, and 
establishes the consistency of the weighting cell estimator 
under the nonparametric response mechanism.  
Corollary 3.2. Under the conditions of Theorem 3.2, ∗

WCt̂  is 
a consistent estimator for ,yt  in the sense that for any 

,0>∈  

.,0
~

Pr 
*

WC ∞→→⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∈>

−
v

N

tt

v

y
 

Remark 5. As Corollary 3.2 shows, as long as a variable 
X  can be found that is sufficiently related to the 

nonresponse, in the sense of assumptions (R1) – (R3), 
construction of weighting cells does not require knowledge 
of homogeneous response probability cells in order to 
construct a consistent estimator. However, as discussed in 
Remarks 1 and 4, the choice of the number of cells still has 
an effect on the properties of the estimator.  
Remark 6. Assumption (R3) can easily be relaxed to allow 
for a small number of points of discontinuity in both )(⋅ϕ  
and its first derivative. A “small” number can mean that the 
number is either fixed as ∞→v  or increases at a rate 
slower than .vG  This would make it possible to account for 
situations such as stratified designs or the presence of 
domains within .vU  The present theory can be extended 
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directly to these situations, if the values for the variable X  
fall in non-overlapping segments for the different strata or 
domains. 

 
4. Simulation Experiments  

4.1 Description of the Experiment  
In order to investigate the practical implications of the 

results of section 3, we carried out a Monte Carlo 
experiment on a fixed population of 000,3=N  units. We 
consider the case of one covariate, X  whose population 
values are generated as: 

1 2, , ..., ~ i.i.d. (0, 1),NX X X U  

and two different variables of interest, 1Y  and .2Y  We are 
interested in evaluating the effects of (1) the (model) 
relationship between Y  and ,X  (2) the response 
mechanism ),( Xϕ  (3) the sample size n  and (4) the 
number of cells ,G  on the bias and on the mean square error 
of the WCt̂  estimator. Since our theoretical results rely on 
the approximation of WCt̂  (or ∗

WCt̂ ) by a linearized 
estimator ,~

WCt  we will also compare the behavior of 

vNt /ˆ
WC  and vNt /~

WC  as estimators of the population 
mean, .1 ∑−= U ivv YNY  Finally, we compare vNt /ˆ

WC  to 
the “naive” estimator of the mean, which is defined for the 
variable Y  as: 

,
∑
∑

∈

∈=
r

r

si i

si ii

r
w

Yw
y  

corresponding to a ratio adjustment of the respondent 
sample to the original sample. This estimator is appropriate 
under the assumption of uniform response mechanism or, to 
use the terminology of Little and Rubin (2002, chapter 1), 
when observations are missing completely at random 
(MCAR). Note that ry  is equivalent to the weighting cell 
estimator with a single cell. 

The levels of the four factors used in the experiment are 
given in Table 1. The “levels” of the variable Y  correspond 
to two populations of independent values. The variable 1Y  
was generated as ),58,40(N  truncated to 3−  to 3+  
standard deviations, corresponding to the “white noise” 
case. The variable 2Y  is related to X  and was generated 
through the linear model ,06.2612.272 ε++= XY  where 

).9,0/(~ Nε  The population mean and variance for the 
two variables were, respectively, (39.9, 55.3) for ,1Y  and 
(40.0, 63.9) for .2Y  

The four levels of the response mechanisms contain two 
different scenarios regarding the response probabilities: 
constant ),C2C1,(  and linearly related to ).L2L1,(X  
The response probabilities are: 

XX

XX

X

X

L

L

C

C

30.065.0)(

60.020.0)(

8.0)(

5.0)(

2

1

2

1

+=ϕ−

+=ϕ−

=ϕ−

=ϕ−

 

The levels of the linear response mechanisms were chosen 
so that the average probabilities (over X ) were approxi-
mately equal to 0.5 and 0.8, respectively. 

 
Table 1 

Overview of Factors in the Simulation Experiment 
 

Factor Levels 

Y  variable 21, YY  

Response mechanism )(⋅ϕ  L2L1,C2,C1,  

Sample size n  200,  500 

Number of cells G  2, 3, 5, 8 

 
For a given ,G  the groups were created by dividing the 

range of X  into G  equal segments and assigning the 
element i  to the group g  if the value iX  was in the thg  
segment, Ni ...,,2,1=  and ....,,2,1 Gg =  The 
simulations were carried out through a completely 
randomized factorial experiment .4242 ×××  For each 
combination of the levels of the factors in Table 1, 

000,5=B  independent realizations of the vector indicator 
of responses, ,)...,,,( 21

T
NRRR=R  were generated 

according to the corresponding response mechanism. For 
each one of such realizations, a simple random sample 
(without replacement and of size ,), sn  was selected from 
the overall population. Within each selected sample, the 
respondents were the values of si ∈  such that .1=iR  

This procedure could in principle lead to a group not 
containing any sampled and responding element, in which 
case weighting cell estimator (ignoring the adjustment in 
(4)) cannot be computed. If that happened, the realization 
was discarded and a new sample drawn from the population. 
Out of the 5,000 repetitions for each combination of factors, 
this happened 13 times in the factor combination 

)8,200,,( 11 LY ϕ  and 15 times with )8,200,,( 12 LY ϕ . It 
did not occur with any of the other factor combinations. 
Hence, the number of samples discarded was very small and 
this has a negligible effect on the simulation results. 

With 200=n  and ,8=G  we expect approximately 25 
sampled elements in each cell, to be further reduced by the 
nonresponse. Since the estimator relies on ratio estimation 
in each cell, we judged this to be a reasonable lower bound 
on the number of observations per cell to consider in the 
simulations. In practice, a number of procedures could be 
used  when  groups  have  too few elements, such as picking 
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a smaller value for G  or collapsing neighboring groups. 
We also implemented an estimator that collapses the empty 
cell with a neighboring cell as well as a version with a lower 
bound on the value of the denominator in the weighting 
adjustment ),ˆ.,.( WC

∗tei  and the results are virtually 
indistinguishable from those reported below, so they will 
not be further discussed here.  
4.2 Results  

Table 2 and 3 show the simulated bias of the weighting 
cell estimator for the variables 1Y  and 2Y  as a fraction of 
the standard deviation. As a comparison, the last column of 
Tables 2 and 3 displays the bias of the naive estimator, .ry  
The bias as a fraction of the standard deviation, referred to 
here as the relative bias, 

2/1
WC

WC
WC

))ˆ(Var(

)ˆ(E
)ˆ,ˆ(RB

t

Yt
tt y

−
=  

was also used in Cochran (1977, page 14), where it is shown 
that as the relative bias increases, inferential results rapidly 
become unreliable. In a simple simulation example, 
Cochran (1977) shows that a relative bias of 50.0±  or more 
leads to highly inaccurate 95% confidence intervals. 

For 1Y  (Table 2), the relative bias of the weighting cell 
estimator is small and is similar to the relative bias of the 
naive estimator, for all sample sizes, response mechanisms 
and cells sizes considered. For the variable 2Y  (Table 3), 
similar results hold when the response mechanism is 
uniform (C1, C2). However, when the response proba-
bilities are a linear function of ),L2L1,(X  the naive 
estimator becomes severely biased. This relative bias 
decreases as the number of cells increases, and three to five 
cells appear sufficient to remove most of the bias. This 
finding agrees with that of Cochran (1968) in the context of 
bias reduction for observational studies.  

Table 2 
Relative Bias of the Weighting Cell and Naive  

Estimators for the Mean 1Y  
 

Number of Cells Sample 
size 

Response 
mechanism 2 3 5 8 

Naive 
estimator 

C1 – 0.00 – 0.01 0.01 0.01 – 0.00 

C2 0.01 – 0.00 – 0.01 0.00 0.00 

L1 – 0.02 0.03 – 0.04 – 0.01 – 0.00 
200 

L2 – 0.00 – 0.02 0.00 – 0.02 – 0.00 

C1 – 0.00 – 0.01 0.04 – 0.01 0.00 

C2 0.01 0.02 – 0.01 – 0.01 0.00 

L1 0.05 0.02 – 0.01 – 0.02 0.01 
500 

L2 0.01 0.01 – 0.00 – 0.01 0.01 
       

Table 3 
Relative Bias of the Weighting Cell and Naive  

Estimators for the Mean of 2Y  
 

Number of Cells Sample 
size 

Response 
mechanism 2 3 5 8 

Naive 
estimator 

C1 0.01 – 0.01 – 0.02 0.02 – 0.01 

C2 – 0.03 – 0.00 0.02 0.01 – 0.00 

L1 1.16 0.59 0.22 0.07 3.57 
200 

L2 0.36 0.18 0.06 0.03 1.36 

C1 0.01 0.01 – 0.02 – 0.00 0.00 

C2 0.02 – 0.00 – 0.00 – 0.01 – 0.01 

L1 1.98 0.96 0.32 0.15 5.84 
500 

L2 0.61 0.29 0.09 0.02 2.26 
        

Hence, when the variable of interest is totally unrelated to 
the response mechanism, as in the cases of 1Y  under all 
mechanisms considered and of 2Y  under the uniform 
response mechanism, the bias does not depend on the 
number of cells. When the variable of interest and the 
response mechanism are related, multiple cells are required 
to remove the bias. 

The relative mean squared error (RMSE) for the two 
variables of interest, defined as the MSE of the weighting 
cell estimator divided by the MSE of the estimator with no 
non-response, 

2

2
WC

WC
)ˆ(E

)ˆ(E
)ˆ,ˆ(RMSE

yy

y

y
tt

tt
tt

−

−
= , 

are in Tables 4 and 5. In these tables, the last column again 
corresponds to the relative MSE of the naive estimator. Note 
that with the exception of the two L1 cases for variable ,2Y  
the Tables 4 and 5 are really variance tables, since the bias is 
so small. 

For 1Y  (Table 4), the variable uncorrelated with ,X  the 
number of cells has relatively little effect on the relative 
mean square error, with results around 2.3 for a 50% 
response rate, and around 1.3 for the 80% rate. However, a 
relatively modest increase in MSE is observed, especially 
for the high nonresponse cases ).L1C1,(  For 2Y  (Table 5), 
the variable correlated with ,X  increasing the number of 
cells improves the results for all response mechanisms, but 
the effect is much more pronounced when the response 
mechanism is also correlated with the variable of interest. 
As for the relative bias, three to five cells achieve most of 
the efficiency gain, while the naive estimator is extremely 
inefficient. 
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Table 4 
Relative Mean Squared Error of the Weighting Cell Estimator 

Compared to the Estimator Without Nonresponse for 1Y  
 

Number of Cells Sample 
size 

Response 
mechanism 2 3 5 8 

Naive 
estimator 

C1 2.02 2.13 2.11 2.21 2.08 

C2 1.25 1.31 1.29 1.28 1.28 

L1 2.34 2.32 2.61 2.70 2.08 
200 

L2 1.30 1.29 1.29 1.31 1.28 

C1 2.25 2.21 2.19 2.31 2.23 

C2 1.30 1.32 1.34 1.29 1.30 

L1 2.55 2.57 2.62 2.70 2.22 
500 

L2 1.32 1.35 1.33 1.34 1.31 
       

 
Table 5 

Relative Mean Squared Error of the Weighting Cell Estimator 
Relative to the Estimator Without Nonresponse for 2Y  

 

Number of Cells Sample 
size 

Response 
mechanism 2 3 5 8 

Naive 
estimator 

C1 1.33 1.17 1.10 1.07 2.07 

C2 1.09 1.05 1.02 1.02 1.26 

L1 3.14 1.57 1.16 1.12 26.32 
200 

L2 1.23 1.07 1.03 1.01 3.57 

C1 1.35 1.19 1.10 1.09 2.22 

C2 1.09 1.05 1.03 1.03 1.30 

L1 6.60 2.30 1.23 1.13 69.75 
500 

L2 1.50 1.14 1.04 1.02 7.83 
        

The difference between the results for both variables is 
surprising at first, but it can be explained using the results 
from section 3. Clearly, the results for 2Y  follow the 
asymptotic theory, in that the MSE improves as the number 
of cells improves (as long as sufficient observations are 
available in each cell). In the case of ,1Y  note first that the 
bias is negligible relative to the standard deviation for all 
values of G  (see Table 2), so that the change in MSE is due 
almost exclusively to differences in variance. It turns out 
that when a variable is iid in the population and sampling is 
equal-probability, the asymptotic variance in Theorem 3.1 is 
relatively insensitive to the number of cells. In that case, the 
increase in MSE is influenced by the variability implied in 
the linear approximation in Theorem 3.1, which increases 
with the number of cells. 

The theory described in this article applies to response 
functions that can have arbitrary smooth shape. In order to 
evaluate results for more complicated functions, we also 
created a variable ,959525 2

3 ε+−+= XXY  where 

),3,0(~ Nε  so that the 3Y  has mean 40.9 and variance 
51.8, and two additional quadratic response mechanisms 

( )

.80.180.150.0)(

96.196.117.0

2
2

2
1

XXX

XXX

Q

Q

−+=ϕ−

−+=ϕ−
 

The results (not shown) broadly reflect the findings for the 
previous variables. When the response mechanism and the 
variables are correlated (the linear variable is correlated with 
the linear response mechanism, and the quadratic variable is 
correlated with the linear and quadratic response mechan-
isms), significant bias occurs but can be removed by 
increasing the number of cells. In the case of the quadratic 
response mechanism and the quadratic variable, eight or 
more cells appear to be required to remove the bias. 
Similarly, the relative efficiency improves for all response 
mechanisms for both the linear )( 2Y  and quadratic 
variable, with the most dramatic results found for the linear 
variable/linear response and quadratic variable/quadratic 
response cases. 

In the previous sections of this article, we approximated 
the weighting cell estimator by a “linearized” estimator 

,~
WCt  and then derived the asymptotic properties of that 

estimator. It is therefore of interest to compare the statistical 
properties of both estimators in simulated settings. For all 
the scenarios in Table 1, we calculated the relative 
efficiencies of the weighting cell estimator compared to the 
linearized estimator. These relative efficiencies were all 
close to 1.00, with the largest deviation being a value of 
1.08. Hence, the statistical properties of weighting cell 
estimator appear to be well approximated by those of the 
linearized estimator. 

 
5. Conclusions  

We have shown that the weighting cell estimator, 
corresponding also to the FEFI estimator proposed by Kim 
and Fuller (1999), is consistent with respect to the sampling 
design and a nonparametric response model. That model 
does not require the correct specification of homogeneous 
response probability cells, as long as a variable related to the 
response probability can be identified. 

The statistical properties of the estimator depend on the 
number of cells used in the estimation, but the relationship 
is rather complex. Asymptotically, there appears to be a 
trade-off between the goodness of the approximation of the 
weighting cell estimator by a linearized estimator, which 
requires a small number of cells, and the mean squared 
error of that linearized estimator, which is reduced when a 
large number of cells are used. While useful in under-
standing the asymptotic behavior of the estimator, these 
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findings only provide limited guidance for choosing the 
number of cells for a particular survey. However, these 
findings show that reliable inference for weighting cell 
estimators will require cells with reasonable sample sizes, 
because variance estimates typically rely on the variance of 
the linearized estimator as an approximation of the variance 
of the weighting cell estimator. 

The simulation experiments show that when the variable 
of interest and the response mechanism are uncorrelated, the 
number of cells has virtually no effect on the design bias of 
the estimator. When the variable of interest and the response 
mechanism are uncorrelated, even the estimator with a 
single weighting cell (corresponding to a simple ratio 
adjustment) is essentially unbiased, while models with 
multiple cells perform equally well. When the response 
mechanism and the variable of interest are related, however, 
the bias properties of the weighting cell estimator depend 
critically on the number of cells. In particular, estimators 
with a single cell are severely biased, but even a relatively 
small number of cells is sufficient to reduce both the bias 
and variance of the estimator. This result holds for both 
linear and nonlinear relationships between the response 
mechanism and the variable of interest. 

The design efficiency of estimators depends on the 
relationship between the variable of interest and the 
variable(s) used to form weighting cells. When those two 
variables are uncorrelated, the number of cells has no effect 
on the efficiency of the estimator. Conversely, when those 
two variables are correlated, increasing the number of cells 
improves the design efficiency of the estimator. Even a 
small number of cells dramatically improves the perfor-
mance of the estimator. 

Overall, it appears that in the presence of nonresponse, 
forming at least a small number of weighting cells based on 
a variable related to the non-response provides a good 
“insurance policy” against design bias and design ineffi-
ciency. This article has shown that this adjustment does not 
require the assumption that the cells be based on a priori 
knowledge of constant nonresponse groups. The resulting 
weighting cell estimator will never perform worse than the 
naive estimator with a single ratio adjustment for the whole 
sample, and it might perform significantly better. 
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Derivations of Theoretical Results  
Lemma 1. Assume that the conditions )3()1( AA −  and 
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Proof of Lemma 1. See Da Silva (2003).  
Lemma 2. Suppose the conditions of Theorem 3.1 hold. 
Consider the vectors ∑ −π=′=

gU iggggv tttt 1
,3,2,1 )ˆ,ˆ,ˆ(ˆ  
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Proof of Lemma 2: See Da Silva (2003).  
Proof of Theorem 3.1: Consider the proof of (5). Let 
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By (A4) and (A5), it is straightforward to check that )(⋅h  
and ( ) ( ), 1, 2, 3,kh k⋅ =  are )1(O  when evaluated at 

,1
gvgN t−  for all ....,,2,1 vGg =  Since by construction, 
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)./(|| vvv nGO=η  Thus, to complete the proof of (5), it 
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Using (A1) and (A4), straightforward bounding arguments 
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because )(⋅gvf  and all of its derivatives up to order three 
are zero at .1
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which leads to )( 1−= vvpv nGOe  by an application of 
Markov’s inequality. 

Expressions (6) and (7) are obtained by direct 
computation of the moments of the linear estimator WCt  
under the sampling design and the response mechanism.  
Proof of Corollary 3.1: Let 
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The result of the corollary follows, therefore, from Fuller 
(1996, Theorem 5.2.1).  
Proof of Theorem 3.1: Fix a }....,,2,1{ vGg ∈  The 
conditions of the theorem imply, by the Intermediate Value 
Theorem, that there exists gX 0  inside the interval defined 
by the lowest and the highest values of gi UX ∈  such that 
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for some constant ),0( ∞∈C  and, by (A5) and (A6), 
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Since the second terms of )/~(Var WC vNt  is bounded by 
),/1( vnO  the conclusion follows. 
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